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Abstract—This paper considers the uplink of a single-cell
large-scale multiple-input multiple output (MIMO) system in
which m mono-antenna users communicate with a base station
(BS) outfitted by n antennas. We assume that the number of
antennas at the BS and that of users take large values, as
envisioned by large-scale MIMO systems. This allows for high
spectral efficiency gains but obviously comes at the cost of
higher complexity, a fact that becomes all the more critical as
the number of antennas grows large. To solve this issue is to
choose a subset of the available n antennas. The subset must
be carefully chosen to achieve the best performance. However,
finding the optimal subset of antennas is usually a difficult
task, requiring one to solve a high dimensional combinatorial
optimization problem. In this paper, we approach this problem in
two ways. The first one consists in solving a convex relaxation of
the problem using standard convex optimization tools. The second
technique solves the problem using a greedy approach. The main
advantages of the greedy approach lies in its wider scope, in that,
unlike the first approach, it can be applied irrespective of the
considered performance criterion. As an outcome of this feature,
we show that the greedy approach can be applied even when only
the channel statistics are available at the BS, which provides blind
way to perform antenna selection.

Index Terms—Massive MIMO, antenna selection, convex op-
timization, greedy algorithm, blind selection, random matrix
theory.

I. INTRODUCTION

Massive MIMO, also known as large-scale antenna systems,
are considered as a promising technology for future wireless
standards [1]. By deploying large antenna arrays at the base
station (BS), massive MIMO systems are capable of achieving
remarkable performance improvement in terms of capacity,
radiated energy efficiency and link reliability [1]–[3]. As a rule
of thumb, in the realm of massive MIMO, hundreds of anten-
nas at the BS are used to serve several tens of users. However,
as mentioned in [4], it can be very expensive to deploy radio-
frequency (RF) elements for all the antennas. Moreover, as far
as detection is considered, using all available antennas might
not be practically reasonable, as it fails to achieve a good
balance between complexity and performance. One solution
addressing this issue is to activate only a portion of the total
number of antennas. This naturally calls for antenna selection
as a potential approach to reduce the detection complexity and
cost while maintaining the system performance at a certain
level.

The concept of antenna selection has been extensively
studied within the field of signal processing. For example, a
similar problem known as sensor selection has been motivated
by several applications, ranging from robotics, target tracking
to wireless networks. For more details, we refer the reader to
the work in [5] and the references therein. Similarly, antenna
selection has already been advocated as an efficient solution to
reduce the number of RF chains [6,7] in conventional MIMO
systems, leading to a significant reduction in complexity and
costs while preserving most of the potential of full MIMO
systems. Basically, k antennas out of n available antennas
are selected in order to minimize/maximize a certain selection
metric. The selection metric can be for instance, the maxi-
mization of the signal-to-noise ratio (SNR) at the base station,
or the maximization of the channel capacity/sum-rate or the
system diversity, etc [4].

In this work, we consider the application of antenna selec-
tion to massive MIMO systems. In particular, we consider the
uplink of a single cell multi-user MIMO system in which the
BS equipped with n antennas receives signals from m single-
antenna users. Instead of using all the available antennas,
we assume that the BS selects k out of the n available
antennas. As per the antenna selection procedure, these k
antennas must be chosen in order to minimize a certain
metric. Of particular interest in our work, is the case where
the BS performs zero-forcing detection. It is thus sensible
to select the k antennas that minimize the mean square

error (MSE) at the receiver. This can be formulated as a
combinatorial optimization problem with n parameters and
comprising n Boolean constraints. One naive way to solve
this problem is to resort to an exhaustive search that would
require

�
n

k

�
computations. This solution, however, could not

obviously be implemented as it goes against the initial target
of reducing the computational complexity. An alternative to
this solution, which can find its roots in the work of [5], is
based on the use of convex relaxation techniques. This method
merely consists in solving a convex-related problem, which is
obtained using convex constraints instead of the original ones.
However, even though the complexity is not as prohibitive as
in the exhaustive search, it is still high, being approximately
in the order of O

�
n3
�
. To deal with this issue, a greedy

algorithm that attempts to approximate the optimal solution
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can be implemented 1. As will be shown in the course of the
paper, the greedy algorithm has two main advantages. First,
it allows a considerable reduction in complexity requiring
roughly O

�
n2
�

operations. Second, it can be applied to a wide
range of metrics of interest. This implies in particular that we
can consider the minimization of an average metric instead of
the mean square error. In particular, for sake of illustration, we
use in this paper the asymptotic equivalent of the MSE based
on some results from random matrix theory (RMT). In doing
so, only the statistics of the channel have to be known. This
not only alleviates the requirement of acquiring the channel
state information (CSI) at the BS, but also allows a further
reduction in performance as it suggests to perform antenna
selection at the rate of the change of the channel statistics.
Interestingly, the numerical results show that the degradation
in performances with respect to the channel-aware greedy
algorithm is small for all practical values of k.

The remainder of the paper is organized as follows. In
section II, we present the system model and the general
concept of antenna selection in massive MIMO. In section
III, we introduce the different proposed schemes to perform
antenna selection. In section IV, we provide some numerical
results illustrating the efficiency of the proposed selection
algorithms. We then conclude the paper in section V.

Notations: Throughout the paper, we use the following
notations: Matrices are denoted by bold capital letters (In is
the identity matrix of size n) and vectors are denoted by lower
case bold letters. For a given matrix A, we refer by [A]

i,j

its (i, j)th entry, and use A
T and A

H to denote its transpose
and Hermitian respectively. We respectively denote by k.k and
tr (.), the spectral norm and the trace of a matrix. Finally, we
denote by diag (a), the diagonal matrix with diagonal elements
the entries of a.

II. SYSTEM DESCRIPTION

We consider the uplink of a single-cell MU-MIMO system
in which m single-antenna users are served by a single base
station (BS) equipped with n antenna with m  n, as sketched
in Figure 1. We assume that the users’ signals are perfectly
synchronized in time and frequency. Thus, the received signal
vector at the BS can be expressed as:

y =
p
⇢Hx+ e, (1)

where y 2 Cn⇥1 is the received vector at the BS, ⇢ is
the average transmit power per user and x 2 Cm⇥1 is the
data vector. The matrix H = {hi,j} 2 Cn⇥m denotes the
narrow-band uplink channel matrix where hi,j is the channel
coefficient between the j-th user and the i-th BS’s antenna.
Moreover, we assume that the random channel H exhibits the
one-sided Kronecker model given by

H = ⇥
1
2
R
G, (2)

where G 2 Cn⇥m is a matrix with i.i.d circularly symmetric
zero mean unit-variance complex Gaussian entries and ⇥R

1The greedy approach has been proposed in many scenarios namely user
scheduling in multiuser networks.
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Figure 1: System model of a MU-MIMO system in the uplink
with a BS equipped with n antennas and serving m single-
antenna users.

models the receive correlation matrix, whose elements rep-
resent the correlation between the antennas of the BS. In
particular,

⇥R , E
⇥
HH

H
⇤
.

Finally, e 2 Cn⇥1 denotes the noise vector at the BS with
i.i.d circularly symmetric zero mean unit-variance complex
Gaussian entries, i.e., e ⇠ CN (0, In).

At the receiver side, the BS estimates the transmitted vector
x on the basis of the observation vector y. Several detection
procedures can be used, among which are the optimal maxi-
mum likelihood (ML) detector and the least-Square estimator.
The latter achieves a good balance between complexity and
performance. In communication parlance, it is referred to as
zero-forcing detection and is given by

bx =
1
p
⇢
H

†
y,

where H
† =

�
H

H
H
��1

H
H is the pseudo-inverse of H. The

performance of the ZF detector for a given channel realization
is assessed using the mean square error (MSE) which is given
by

MSE
(a)
= E

h
kbx� xk2

i

= tr [⌃]

=
1

⇢
tr
h�
H

H
H
��1

i

=
1

⇢
tr
h�
G

H
⇥RG

��1
i
,

(3)

where the expectation in (a) is taken over all the noise
realizations and ⌃ =

�
H

H
H
��1 denotes the estimation error

covariance matrix.
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A. Antenna Selection

Based on the available CSI at the BS, the goal of antenna
selection is to select the ”best” k antennas out of n antennas
that minimizes a given performance metric, where m  k  n.
Obviously, reducing the number of antennas to k is expected to
cause a performance loss. However, there are many scenarios,
such as those encountered in massive MIMO systems, where
computational complexity can be of a major concern. In such
circumstances, achieving a substantial reduction in complexity
at the cost of an acceptable degradation in performances
is viewed as a good option. In this paper, we propose to
reduce complexity by performing antenna selection, where
we keep the k antennas that yield the least value of MSE.
More specifically, for a given set of indexes S (|S| = k),
containing the index of antennas to be selected , we define
the selection matrix S 2 Rk⇥n as the matrix that permits to
extract k measurements from H corresponding to S . This can
be mathematically written as

yS = Sy, (4)

where S is a k ⇥ n matrix defined by

[S]
i,j

=

⇢
1 j = S [i]
0 otherwise , i = 1, · · · , k. (5)

In other words, S is a matrix which exalts one non zero entry
in each row located at the columns indexed by the set S . Using
the structure of S in (5), we have the following properties

• SS
T = Ik.

• S
T
S = diag (s).

where s = {si}i=1,··· ,n is a n�dimensional vector with entries
equal to 1 at the locations given by S and zero elsewhere.
Upon applying the operator defined by S, the resultant error
covariance matrix, which we denote by ⌃S , writes as

⌃S =
�
H

H
S
T
SH

��1

=
⇣
G

H
⇥

1
2
R
S
T
S⇥

1
2
R
G

⌘�1

=
⇣
G

H
⇥

1
2
R

diag (s)⇥
1
2
R
G

⌘�1
.

(6)

As stated earlier, the optimal set of measurements denoted by
S⇤ is chosen to minimize the MSE. Mathematically speaking,
the selection problem can be formulated as follows

s
⇤ = argmin

s
tr
⇣

G
H
⇥

1
2
R

diag (s)⇥
1
2
R
G

⌘�1
�

s.t. 1
T
s = k

si 2 {0, 1} , i = 1, · · · , n.

(7)

Obviously, finding the optimal solution of the problem in
(7) might be too computationally cumbersome, as it involves
Boolean constraints. To solve this issue, we provide in the next
section two alternatives that provide suboptimal solutions to
the problem in (7) with a considerable reduced complexity.
The first algorithm is in the spirit of the work of [5] and
merely relies on using convex relaxation techniques allowing
to substitute the constraints by convex ones. The second
algorithm solves the problem using a greedy approach and
presents even lower complexity compared to the first one.

III. SUB-OPTIMAL ANTENNA SELECTION

In this section, we propose two different sub-optimal solu-
tions to the problem in (7). The first one, which is inspired
by the work of [5], merely consists in relaxing the Boolean
constraints of (7) into convex ones. This provides a related
convex problem whose solution corresponds to a suboptimal
design. The second approach is to use a greedy algorithm that
attempts to provide a reasonable sub-optimal solution to (7).
The main advantages of the latter approach are twofold. First,
it presents a lower complexity. Second, it can be applied to
any metric of interest. Particularly, when applied to average
metrics depending only on the channel statistics, the greedy
algorithm provides a blind way to select the antennas, avoiding
thus for the BS the need to acquire CSI.

A. CSI aware antenna selection approaches

1) Antenna Selection via Convex Optimization: This ap-
proach is based on solving a convex related problem to
the one in (7). Since the objective function is convex for
si � 0, i = 1, · · · , n, this problem is obtained by simply
replacing the boolean constraints si 2 {0, 1} with the convex
constraints si 2 [0, 1]. In doing so, we obtain the following
optimization problem

s0 = argmin
s

tr
⇣

G
H
⇥

1
2
R

diag (s)⇥
1
2
R
G

⌘�1
�

s.t. 1
T
s = k

0  si  1, i = 1, · · · , n.

(8)

It is worth mentioning that the output of the optimization in
(8) yields a lower value than the minimum MSE, and as such
can be viewed as a global lower bound on the performance.
Moreover, the optimal vector s0 can contain real values not
necessarily zeros or ones. In order to obtain the index of the
selected antennas, one should order the elements of s0 and
then assign ones to the k-th greatest values and zeros to the
remaining entries.

2) Greedy Approach: Greedy algorithms have been widely
applied in the framework of wireless communication, partic-
ularly in scheduling where the objective is to select the set
of users that maximizes a certain utility function [8]. The use
of greedy algorithms for antenna selection is, however, less
common in the context of antenna selection and measurement
selection in general. In order to stress the wide scope of
applicability of the proposed greedy algorithm, we consider
here the problem of selecting the index of antenna elements
that minimize a pre-defined metric f (H,S), where H is
some information about the channel H

2 and S is a set of
k indexes from {1, · · ·n}. The principle of the proposed
greedy algorithm is as follows. First, we start by choosing an
initial candidate set S obtained by randomly selecting a pattern
(set of antenna indexes) of size k. Then, we select from the
set of the remaining indexes (S = {1, · · · , n} \S), the first
value that, when replaced with one of the indexes in S leads
to a reduction in f (H,S). When this occurs, S is updated
by replacing the index that presents the largest reduction

2
H could be for example the channel statistics or the full channel itself.
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Algorithm 1 Greedy Approach for Antenna Selection

1: Initialize S = randsample(n, k) . randomly generate
a pattern of size k

2: Compute metric⇤ = f (H,S)
3: for i = 1! #iterations do
4: S = {1, · · · , n} \S
5: j  1
6: while j  n� k do
7: p S [j]
8: I  S
9: table zeros (k, 1)

10: for l = 1! k do
11: I [l] p
12: table [l] f (H, I)
13: I  S
14: end for
15: if min (table) < metric⇤ then
16: metric⇤  min (table)
17: S [argmin (table)] p
18: end if
19: end while
20: end for

in f (H,S). This procedure is repeated for a predetermined
number of iterations. The corresponding algorithm is detailed
in Algorithm 1. It can be applied for any metric f (H,S) but
the focus in this paper is on the use of MSE.

Proposition 1. The greedy algorithm described by the steps

of Algorithm 1 is guaranteed to converge.

Proof: By construction of Algorithm 1, the computation
metric f (H,S) decreases from one iteration to the next.
Since the performance is bounded by the optimal performance
achieved by exhaustive search, then f (H,S) is decreasing and
bounded from below which gives the claim of Proposition 1.

B. Blind Antenna Selection

1) Motivation: In many applications, the channel matrix H

is not constant, i.e. it can randomly change from time to time.
For example, H follows a block fading model in which the
channel matrix is taken to be constant over a given duration
known as block and change independently from one block
to the other. That being said, the antenna selection process
has to track the variation of the channel matrix and thus
antenna selection has to be performed at every realization of
H. Assuming, we need to perform antenna selection over a
period of N blocks, the complexity then scales by a factor
of N yielding a complexity of N ⇥ O

�
n3
�

computations in
the case of convex optimization. This becomes more tedious
especially when the number of blocks is large. Moreover, in
many situations, the channel matrix H is unknown or can not
be estimated, thus, the only way to perform antenna selection
is via a approach. This constitutes the main motivations to de-
velop selection algorithms that can perform antenna selection
without the need to track the variation in H.

2) Main idea: The idea is to consider the use of an
approximate of the MSE. This approximate is obtained from
random matrix theory results showing that the average MSE
converge to a deterministic quantity as both dimensions n and
m grow simultaneously large without bounds while their ratio
m

k
! c 2 (0, 1). In particular, we have the following result

Lemma 1. [9, Theorem 2] Let ⇤ (s) = ⇥
1
2
R

diag (s)⇥
1
2
R

with

non zero eigenvalues �i (s), i = 1, · · · , k. Then, as m and n
go simultaneously large without bound

1

m
E tr

⇣
G

⇤
⇥

1
2
R

diag (s)⇥
1
2
R
G

⌘�1
�
�m⇤(s)

a.s.���!
m
n !c

0,

where m⇤(s) is the unique solution to the following fixed-point

equation

m⇤(s) =
m

P
n

i=1
�i(s)

1+�i(s)m⇤(s)

. (9)

The quantity m⇤(s) is well-known as the asymptotic inverse
moment of the Gram matrix G

⇤
⇥

1
2
R

diag (s)⇥
1
2
R
G with one-

side correlation given by diag (s)⇥R. For more information
about inverse moments of one-sided correlated Gram matrices,
the readers are referred to our work in [9] and references
therein. Using the asymptotic inverse moments derived in
Lemma 1, we formulate the approximate antenna selection
problem as follows

s
⇤ = argmin

s
m⇤(s)

s.t. 1
T
s = k

si 2 {0, 1} , i = 1, · · · , n.

(10)

As shown in the formulation in (10), the objective function
depend only on the large scale channel statistics and can be
computed beforehand, or at least be updated at the rate of
change of the channel statistics. Therefore, blind antenna
selection can be directly obtained from the greedy algorithm
described in Algorithm 1 by simply selecting an average
metric f (H,S) depending solely on the channel statistics of
H given by ⇥R.

IV. SELECTED NUMERICAL RESULTS

In this section, we present some numerical results in order
to compare between the different proposed antenna selection
approaches 3. All the experiments are performed when the
number of users m is set to 10, a total budget of antennas is
n = 80 antennas and an SNR of ⇢ = 20 dB. Moreover, we
consider the following spatial correlation model [10]

[⇥R]i,j = exp
⇣
�0.05.d2 (i� j)2

⌘
. (11)

This models a broadside Gaussian power azimuth spectrum
with 2� root-mean-square spread where d corresponds to
the wavelength antenna separation. For the channel-aware
implementation (H = H), we consider both approaches, the
greedy and the one based on convex optimization, however,

3The algorithm based on an exhaustive search is omitted due to its huge
complexity.
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for the blind implementation (H = ⇥R), we only consider
the greedy approach. To begin with, we illustrate the accuracy
of the asymptotic equivalent by representing the exact value
of the objective function in (7) along with its asymptotic
approximation for several values of k. As shown in Figure 2,
the asymptotic equivalent provides an accurate approximation
to the exact MSE especially for large k.

In Figure 3 , we plot the MSE performance achieved by
the greedy algorithm for both cases (channel-aware and blind)
as a function of the number of iterations. For both cases, the
greedy algorithm requires a number of iterations, K = 2 to
converge. This value of K will be implemented in all the
next simulations for the greedy algorithm. In Figure 4, we
show the performance of the proposed algorithms along with
the random selection algorithm that randomly select a set of
k antennas out of n. The main observation is that when the
impact of correlation is small (d = 2), the proposed blind
algorithm is not so advantageous as compared to the random
selection algorithm since the rows of H are quasi-independent
and so the blind approach is not of much use. As we increase
the impact of correlation (d #), the blind approach has a
significant gain compared to the random approach and gives
slightly lower performance as compared to the algorithms that
require full channel knowledge. The MSE in Figures 2 and 4
is averaged over N = 100 channel realizations, i.e.

MSE =
1

N

NX

i=1

MSE (i) , (12)

where MSE (i) is the MSE for the ith realization. Note that, the
blind greedy algorithm performs antenna selection only once
as long as the statistics are unchanged and as such requires
lower computational complexity as illustrated in Table I and
Figure 5 . All in all, it appears that it presents in reality a
better trade-off between complexity and performance.

Algorithm Complexity
Convex Optimization N ⇥O

�
n3
�
[5]

Greedy (H = H) K ⇥N ⇥O
�
n2
�

Greedy (H = ⇥R) K ⇥O
�
n2
�

Table I: Computational complexity of the different proposed
algorithms.

V. CONCLUSION

This paper considered the use of antenna selection for
massive MIMO systems to reduce the detection complexity
at the BS. The selected antenna should be chosen such that a
given performance metric is minimized. This in general yields
a difficult combinatorial optimization problem. In this paper,
we proposed two heuristic algorithms to approximately solve
this problem. The first one relies on convex optimization tools
and merely consists in solving a related-convex problem. The
second one is based on a greedy algorithm. Interestingly, we
showed that this algorithm can be also applied when only the
channel statistics are available. Numerical results are presented
in order to compare between all the different approaches in
terms of performance and complexity.
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